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ABSTRACT

Many separated targctk, or only a few differing values, are subject to a simultaneous attack.

The area defenses considered have (a) impact point prediction (IPP) and full coordination, or (b) no

IPP and full coordination, or (c) no IPP and partial coordination. For a given attack, the defense

wishes to allocate its interceptors to maximize the expected total survival value of the targets. For a

given attack size, and with knowledge of the defense's capabilities, the offense seeks a strategy to

minimize expected total survival value against best defense. We present algorithms to determine

optimal a' tack and defense strategies and the optimal value of the min-max problem, and we show

how to take computational advantage of the relatively few unique target values. Illustrative

computational results are provided.



1. INTRO)UCTION

Consider an area to be defended that consists of T separated point targets, and associate with

target i a value v,, i = 1, ... , T. Without loss of generality, we assume that the v, satisfy v 1 > v,, >

•-. > vT > 0. We denote the number of attackers directed against target i by a and the attack

T
against the T targets by a= [a 1 ... , aTI, with r a i = A and each a, e X, the set of nonnegative

i=1

integers. The defense has D interceptors, each of which may be assigned to intercept any attacker ill a

given sub.set, possibly the entire set, of attackers. The objective of the defense is to allocate its

m..t-.rceptors against t a'lac-:rs . . u ai i6 t, ,xiie expected total survival value. In his first move. the

attacker seeks an attack allocation which will minimize expected total survival value against best

defense.

The specific assumptions we make are as follows:

(1) The attack is simultaneous, i.e., the defense sees the overall size of the attack, A.

(2) The defense has the "last move." Only after the attack is observed does the defense

need to allocate its D interceptors.

(3) All A attackers are identical. An attacker will penetrate to its intended target if

not successfully intercepted. Such a penetrator will destroy the target with probability a, a e (0, 1].

If multiple attackers penetrate to a target, they act independently.

(4) All D defenders (interceptors) are identical. An interceptor will destroy the

attacker at. which it is directed with probability 6, 6 c (0, 1]. If several defenders are aimed at a single

attacker, they act independently.

(5) Once an attack or defense is allocated, there is no adjustment or modification. For

example, attackers may not be diverted from their initial destinations nor may the defense use a

shoot-look-shoot" option.

(6) The attacker knows the overall size of the defense, D.

(7) The adversaries have common knowledge of the target values. 0

I ~D1 tribution,/
Availability Codes

iAvall and/or

S" Dist Spuoa.
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(8) If the defense has impact point prediction (IPP), it correctly identifies the intended

target of each attacker.

(9) If the defense is (fully) coordinated, its resources are allocated by a single controller.

If different subsets of the interceptors are allocated by independent controllers, we say the defense is

partially coordinated.

(10) The defense has area defenders only; none of the defensive intercepto[s are point

defenders assigned to protect specific targets.

A brief outline of the paper is as follows. In the remainder of this introductory section we

briefly survey the literature dealing with problems of attack and defense of a set of separated point

targets. In section 2, we introduce our problem functions and formulate the defender's problem and

the attacker's problem associated with each of the three defense capabilities considered: (1) the defense

has IPP and is coordinated; (2) the defense has no IPP but is coordinated; and (3) the defense has no

IPP and is only partially coordinated. For each of the three cases, we provide (or reference)

appropriate algorithms to solve both the defender's problem and the attacker's problem and provide

the optimal min-max value. In section 3 we show how the efficiency of each of the three algorithms,

for the respective versions of the attacker's problem, can be greatly increased by taking advantage of

the relatively few distinct values among the T target values. Section 4 provides illustrative

computational results, and section 5 contains concluding remarks.

A good deal of missile allocation work deals with preallocated preferential defense of a set of

identically valued targets, using a game theoretic approach by both attacker and defender. Early work

on this problem was by Matheson (1966, 1967) and recently Bracken, Brooks and Falk (1987) and

Bracken, Falk and Tai (1987) have examined robustness issues connected with the assumption that the

defender knows the attack size A. They provide references to the intervening work in this area.

In their seminal work, Eckler and Burr (1972) examined a number of missile allocation
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problems under a variety of assumptions and thoroughly surveyed the literature.

For targets of different value, Karr (1981) analyzed several problems under the assumption of

sequential attack (the defense sees the attackers one at a time and must make an engagement decision

at that tire without knowledge of the overall attack size) and developed continuous (i.e., noninteger)

solutions on the basis of Prim-Read deployments.

There is a body of work in which the defender's objective is to minimize the cost of the defense

while insuring prescribed levels of survival value as a function of attack size. Under the assumption of

a linear bounding function, Burr, Falk and Karr (1985) generated integer solutions for a defen"ae against

a sequential attack. Falk (1985b) extended this concept to a larger class of bounding functions, and

McGarvey (1987) added an overview with mixed strategies. Karr (1982) and Soland (1987a) developed

solutions for defenses against simultaneous attacks.

Finn (1986) examined the value of the additional knowledge provided by IPP for the case of

perfect weapons (i.e., a = 6 = 1) with an area defense and terminal defenses at the targets.

2. PROBLEM FORMULATIONS AND SOLUTION ALGORITHMS

2.1 Coordinated Defense wiLh IPP

2.1.1 Problem Formulation

If di interceptors are allocated for the defense of target a under an attack of size ai, then an

even-as-possible distribution of these di defenders against the ai attackers is optimal. [That such a

quasi-uniform defense of target i is optimal is shown by Soland (1987b)]. Specifically, for ai > 0, the

defense allocates

and fdi/ai1 interceptors to each of r, -" [di - d,/aija] attackers

ki -[ kdi/aiJ interceptors to each of ai - ri attackers.

[Notation: We use LxJ for the integer part of x and xl -- min {n > x I n integer}.]
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If we define the probability that a target survives an attacker facing m defenders as

7r= ' 1 - a(l-6)m for m = 0, 1, ... ,

then, with ki and ri as defined above, we may write the survival probability at target i as
ai-r i ri

X={ 18(1+X , ai = 1, 2, ..., A

1, 
ai = 0.

Let d - [d1 , • , dT]. We now define the defender's problem for a given attack a as

T

I,(&) Maximize 0( a, d) - viO(a, di)
i=1

subject to
T

d d,_ D

di c X, i= 1,. T.

We denote the optimal value of problem 91(a) by v[91(a)]. [Note: For perfect weapons (a 6 1),

the defender's problem is a 0-1 knapsack problem. Otherwise, it is d nonlinear integer programming

problem.] We may then formulate the attacker's problem as

91 Minimize v[ 91(a)]

subject to
T

a< A
i=1

a i e ¢ I..T

Inasmuch as our solution algorithm for problem 91 (itself a nonlinear integer programming problem) is

of the branch-and-bound type, we would greatly prefer to limit the number of attacks that we need to

examine. The following Nonincreasing Attack Theorem (NAT) enables us to do so. The NAT for the

case of IPP and perfect weapons was first proved by Falk (1985a), whereas a proof with IPP and

imperfect weapons (i.e., a < 1 and 6 < 1) was suggested by Falk (1987) and given by O'Meara

(1988). The proof for the case of no IPP and coordinated defense was given by O'Meara and Soland

(1988b).
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Theorem (Nonincreasing Attack Theorem)

There is an optimal attack, say a*, with ai > a+, a = 1, ... , T - 1. We call a a

nonincreasing attack.

2.1.2 Algorithm for Problem 91

The algorithm we use to solve problem G1 is a branch-and-bound scheme. During the course

of the algorithm, it is often necessary to determine the "best defense" against some given attack a, that

is., to solve problem 9 1(a) (or to determine some bounds on its optimal value). Details of the

algorithm are provided by O'Meara and Soland (1988a, 1988c).

2.2 Coordinated Defense with no IPP

2.2.1 Problem Formulation

To avoid any cumbersome notation, we shall examine the cases of perfect weapons (a = 1, b= 1)

and imperfect w apons (a<l, <l) .eparately. Results for the mixed cases follow without difficulty.

From the point of view of the attack, with perfect weapons there is a logical constraint of

allocating no more than D + 1 attackers against any target since that number will assure target

destruction. The assumption of no IPP means that the defense has no real decision since all the

attackers "look the same." Accordingly, the defense allocates its D defenders against D of the

attackers. Since the weapons are perfect, (A - D) attackers will penetrate to their intended targets.

For nontrivial problems we have D+ I < A < T(D+ 1).

We observe that target i survives only if all ai attackers are intercepted. To determine this

probability, we consider the D attackers to be intercepted as a sample drawn at random (without

replacement) from the population of A attackers. If we think of this as a population dichotomized into

attackers destined for target i and those that are not, a hypergeometric distribution is appropriate.
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Accordingly, we define the surt, al probabdity at target i aganst attack a, as ?(aj) and compute it aLs

0(ai) D

0, ai ;> D.

We then compute the ezpected survival value at target : as

and the expected total survival value for attack a as

T
*1(a) = Evjtk(a1 ).

i=1

With imperfect weapons, any number of attackers may be directed against any target, and any

number of interceptors may be allocated against any attacker. Of course, the overall attack and

defense size constraints are still active.

As above, the lack of impact point prediction means that the attackers appear identical to the

defense. Intuition suggests that the best defense is to spread the interceptors as evenly as possible

among the attackers. This has been shown by Soland (1987b) to be an optimal defense in that it

stochastically minimizes the number of attackers that penetrate the defense. Specifically, the defense

allocates

fD/A] interceptors to each of R [D - [D/AJAI attackers

and

LD/A j interceptors to each of A - R attackers.

With system reliabilities a, 6 c (0, 1), the parameter range for nontrivial problems is A > 0 and

D >0.

In this case the uncertainty about survival value can be attributed to both system

(un)reliability and the lack of IPP. As might be expected, the survival probability function has a more
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involved structure. For target inot under attack, we have V'(a,) = 1. For a. > 0, conditioning

argument.i [see O'Meara and Soland (1988b)] yield the following:

(i) if 1) < A,

a) a i -a a-n I

-~ n~ (1 )n 6 (A A D)

where y = max {a, - D. 0} and ft = ,in {1. A - D }:

(ii) ifD > A,

ai

I=n

• z o lm) D/-Aj'"L -_ (lb)LoDI ...]

aI -- aA] D/]

n }\(A - R - n}

(A AR)

wiiert n -- x{a, - R, 0} and i = min {a, - (i- m), A - R}.

We formally define the attacker's problem as

T
92 Minimize *(a) = viV,(ai)

subject to
T
Ea, 5 A
i=l

ai e X, z = 1, .. T.
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While it is fat,.y straightforward to show that, for perfect weapons, problenm 9P2 is a cnvl.,'

programming 1,,oblem in the integer sense that the function i, has nondecreasing increments. the

complexity of ¢ for imperfect weapons has not yet permitted a similar theoretical assertion. llwcvr.

all computational experience thus far has not uncovered a nonconvex case. The algorithm we u.- (, 4,

below) is of the "reduction" type for convex problems. A dynamic programming algorithin is ai so

available for an) nonconvex instances, if necessary. [See O'Meara and Soland (19881))].

2.2.2 Algorithm for Problem 92 (q, Convex)

Lafon and Lahrichi (1988) describe the following algorithm for a class of problemis cntlltw

problem 9 2 when V' has nondecreasing increments, that is, when

v,(a + 1) - v,(aj) >! V'(aj) - v;(a, - 1) a, = 1, '2 ... ,. A.

Algorithm [lTafon and Lahrichi (1988)1:

Step 0 (Initialization):

a, = 0, i1 ,... T; A, = A;

k=1; go to step k.

Step k (Allocation):

If Ak = 0, stop (a is optimal for problern 92);

else Xk = [Ak/Ir;

i = in{i I v, +.)(a,+,x) - )] = niii, {v,[ ,(a,+xk) - (a,)] I. .....

a,* := a s ' + Xk.

Ak+1 := Ak+I - x:;

k:= k+l go to step k.

• ., mirammmmlmm m i im I l I f] l!



Observe that the allocation a = fal .-- I aT] at the start of any step k > I solvvs

T
Minimize E v, i,(a.)

t=1

subject to

T

Ea =A - Ak
i=1

ai  .N, z= 1.. F.

.3 'artiallv ('oordinated Defense with no IPP

2.3.1 Pr,'hblem Formulation

For the case of partial coordination and no IPP, suppose the D interceptors art divided lnto N

(aufle) groups of n interceptors each, so Nn = D. Suppose each group of n interceptors is fully

coordinated in the sense that, it is centrally controlled. We assume, however, that different group.s act

inde'pe'nideutly and do not comrnunicate with each other.

Su ppose each of the N groups is physically able to engage each of ni different attackers with

each o' ;.s n interceptors, where I _< n < A.

Assuinie, finally, that each attacker may be defended against by r different groups, and thus by

a total of nir interceptors. Hence, there are Anr possible pairings of attackers and interceptors. This

number is also equal to roD, since each interceptor can be allocated to any one of rn different attackers.

ilence Atr = nil), so n/m = D/rA. For example, A=D=I000, n=10 and m=20 lead to r=2.

Now consider an arbitrary one of the ai attackers directed at target z, and consider one of the r

groups of interceptors able to fire at this attacker. Since the defense lacks IPP, the controller of this

group can do no better than to spread his n interceptors as uniformly as possible among the m attack-

ers he can fire at; this stochastically minimizes [see Soland (1987b)] the number of attackers (out, of the

in) that, in the eyes of this controller, penetrate his defense. Thus the controller selects n - mn/mIj

of the in attackers to receive I n/m] = fil interceptors each, where 7 - n/m = D/rA, and
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m - n + mln/mJ of the m attackers to receive ['7j interceptors each. Our particular attacker there-

fore survives the defense of this group with probability

P (1 - 6 )'7 (n - mLn/mJ)/m + (1 - )L'J n + mLn/(m)/m

- (1 - 6) '71(,7 - L17J) + (1 - 6)[17J(1 - ,7 + L1J),

and it survives the defenses of all r groups that can fire upon it with probability pr because the groups

act independently.

The probability our particular attacker fails to destroy target i is then

"-Y-- I - o pr,

where, it turns out, y < 1 if 6 < I and/or D/rA < 1.

It is certainly not true that the ai events {attacker j fails to destroy target i}, j =... t ar

independent. However, if the ai attackers are cross-targeted (i.e., launched from d;fferent places), and

if ai/A is small, then, to a very good approximation, these a, events may be treatec , inleIch ndlet.

This is akin to approximating sampling without replacement by sampling with replacement.

Using the approximation just described, we conclude that target i survives with probabilitv

7 a The total expected survival value for attack a is then r(a) = v,-a, so that tile atacker's

problem against a defense with partial coordination is formulated as

T ai
9 3  Minimize r(a) = v, y

subject to
T

Eai < A
z=1

a, E if, i=1, ..., T.

For y E (0, 1) the function -a' for a, - XN is easily shown to be strictly decreasing with strictly

increasing increments. This is sufficient to conclude that the NAT holds for problem 9 3 .
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Note that r, rather than N, is the appropriate measure of the dcfense's partial coordiuiat Ion and

that m, and hence r, depend on geometrical considerations. Since _, a is a decreasing function of' r,

larger values of r indicate less defensive coordination; r= 1 indicates perfect defensive coordination and

yields solutions to 9 3 that are almost identical to the corresponding solutions to 9 2 . The r;ange of

meaningful values of r is I < r < D.

2.3.2 Algorithm for Problem 93

The principal motivation behind the algorithm for Problem 93 is that we can take advantage

of the exponential property of the survival probability function. The change in expected survival value

at target i when the attack changes from ai to ai + A is v, 7 ai( 7 A - ), A = 1, 2, .... The algo-

rithm is of the -greedy" type. That is. the allocation of each successive attacker is made to that target

offering the greatest immediate decrease in expected survival value, given the allocation to that point.

Algorith ni:

Step 1 (Initial Phase):

ai = 0, z= 1. T;

i= Idetermine T' = max f, I LI+Cn(v,/vj)/Cn-y) j <5 A;

t ~ ~ ~ T' ... i=

a, = [l+en(vt/v,)/Cn jJ, I= 1, ... , T; A = A a2 ;
t=1

aT, = min{1, Al}; A' := A' - aT,;

if A' = 0, stop (a is optimal for 93); else go to step 2.

Step 2 (Intermediate Phase):

a, = a, + [A'/T'J, T= ..., T; A' A'- T'LA'/T'J;

if A' = 0, stop (a is optimal for 93); else go to step 3.
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Step 3 (Final Phase):

Let i, ... , IT, be a reordering of 1, ... , 'I" such that

if 1 < m < U < I, then V7fa"' > Vny an

ak = a. + 1, k=-1, ... , iA';

stop (a is optimal for 93).

3. GROUPS OF EQUAL-VALUED TARGETS

If there are relatively few distinct values among the target values v, ... , vT, the algorithms of

section 2 can be modified to run much faster. The basis for the increase in speed is the following

Quaszunform Attack Theorem (QAT).

Theorem (Quasiuniform Attack Theorem)

With an appropriate survival function (including those of problems 9 1 , 92 and 93) and

equal-valued targets, there is a nonincreasing optimal attack a* with the property 0 < a* - a- _ 1.

Proofs of the QAT for problems 91 and 92 are given by O'Meara (1988). The proof for

problem 93 follows directly from the convexity of the survival probability function 

3.1 Modification of the Algorithm for Problem 91

To make the necessary branching modification to the algorithm described by O'Meara and So-

land (1988a, 1988c), we introduce the following notation. Order the C different. values among v1  VT

as v, > ... > 1) > ... > VG

with ng targets having value vg, g 1 , ... , G. Furthermore, define

T {ivi = vg, , = 1,...,T),

A9  E ai and A9 -Za.
, (T.9  icT
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When a given node S = {al a -< a -< W} is presented for branching, we now define the index

g" = min{ g0 < Xg - A9 = min{X- Aj > Oj C {1, ..., G}}}

We then define the limiting aggregate values of SL as

AL =Ag V g = 1 ... , G andA-{ gg

and the limiting aggregate values of SR as

L(g+ A.g)/2J+l, g =g-

AXR 'k. g= 1,..G and AR= ~Vg Ag, g :/# g*.

To maintain nonincreasing limiting attacks, we tighten according to the following rules. In succession.

for 9 = g*, ... , G, we tighten

XL X L Ag j: in1 ng ng_--

and for g = g*-1 ... , 1, we tighten

A9 max{Ag , ng F g 1
g-1

Define N, -- 0 and Ng -- n, for g = 2 ... G. Then with s- Ag- ng [Ag/ngj, we may now
a=l

write the limiting attacks of node SL as

L
a =a

and

-L9 = fglng I , i < iS; g=1, G.L g/ng J, I > 19
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With i; = A# - nLAg/ngj, the limiting attacks of node SR are

and

aR  fAs/nA, , _< -G

LAq/ngj, ' > i;

3.2 Modification of the Algorithm for Problem 92

In the algorithm of section 2.2.2, each iteration of the allocation step (step k) caused )-nlv the

attack at the "critical" target i° to be changed. In the modified algorithm below, a "critical" group is

identified with an allocation to all targets within that group. This faster consumption of resources

(attackers) reduces the number of time-consuming probability calculations that needs to be made. We

use the same group notation as introduced above.

Algorithm for Problem 92 with Groups (0 convex):

Step 0 (Initialization):

a, = 0, i=1, ..., T;A 1 = A;

k - 1; go to step k.

Step k (Allocation):

If At = 0,

stop (a is optimal for problem 92);

else

xi= rAh/T1;

min{, v aN,++xk)-k(-N,+,)] = g = 1, ...,

14



if ng-xk < AL then

aNg.+i = aN,.+i + Ak.,  i=1, n.. ;

Ak+l := Ak - ng'xk;

k := k+l; go to step k.

else

aN, 9 +. a Ng.+i + xk ,  A k - nqo(xk -1);

aNg'+i a Ng*+i + xk -1-i, i=A - ng(xk-)+l ..... ng;

stop (a is optimal for 92).

3.3 Modification of the Algorithm for Problem 93

When Problem 93 has groups of equally valued targets, we may modify the algorithm of

section 2.3.2 to achieve some computational efficiencies. As in the preceding section, allocation of

resources at each step now applies to all targets within a group rather than to a single target. Of

course, a group may consist of only one target.

Algorithm for Problem 9 3 with Groups:

Step 1 (Initial Phase):

a, = 0, =1,..., T;

g-1

determine G' = max g I E nLl+in(v/v,)/en 7J A
9=,",

' k 
i=1 V /

aNi+i := Ll+tn( VG/VV/en -], 1, ..., ni; i~l, ., G'- 1;

A' = A -- nj aNj+1;

aNG, +i = ,i=1, ... , min{A' , nG 1};

A' := A' _ min{A?, nG d;

if A' = 0, stop (a is optimal for 13); else go to step 2.
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Step 2 (Intermediate Phase):

a +-LAI-G+ ni J j =1, ..., n:, G=,..., G;
' I/ G

A' :=A'- ( n, ) LA'/ :j

if A' = 0, stop (a is optimal for 93); else go to step 3.

Step 3 (Final Phase):

Let i, ... , i GI be a reordering of 1 ... , G' such that

aN .+1 aNk+i

if I < j < k < G',then v,y - > vk

determine g" = max ,lNi 9 <
g= .... 1

aN,, , = aNig~ h + 1, h = 1, ... , nig=, ... , g- 1;

AF := A' - Nig , ;

aNi,+ h := aNig,+h + 1, h =1, ... , A';

stop (a is optimal for 93).

4. COMPUTATIONAL EXPERIENCE

All algorithms, both initial and modified, have been implemented in FORTRAN with no

special compiler options invoked. All computations have been performed on the VAX 11/780 of the

School of Engineering and Applied Science, The George Washington University.

4.1 Problem 91

The algorithm for problem 91 is the most computationally intense of the three in that it

involves two levels of optimization (both attacker and defender), each of which involves a branch-and-

bound scheme. Accordingly, only problems of modest size have reasonable run times. Table 1,
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however, shows that we can consider solving much larger problems in a timely manner when there are

groups of equally valued targets. The CPU times shown in the "singly" column are for the basic

algorithm in which targets are considered individually. The times shown in the "Groups" column are

for the modified algorithm. The problem data are: (T=) 20 targets, (G=) 3 groups (target values:

2@110, 12@60, 6410), attack and defense reliabilities a = 6 = 0.9, and equal numbers of attackers

and defenders (A=D).

Table 1. Run Times for Problem 91

CPU Time (secs) Reduction Factor
A(=D)

Singly Groups (Singly - Groups)

60 844.03 2.53 333

70 1178.67 3.30 357

80 1637.69 4.10 399

90 1425.23 4.75 300

100 2091.03 8.15 256

Total Time 7176.65 22.83 314

The significant reduction in CPU time is due to the fact that the attacker's branch-and-bound

scheme operates in G-space in the modified algorithm rather than in T-space, as in the basic

algorithm.

4.2 Problem 92

For the fully coordinated defense with no impact point prediction, we can solve larger problems

since only the attacker has a real decision on allocating resources. In Table 2 the problem data are:

(T=) 100 targets, (G=) 3 groups (target values: (10@22, 60@12, 30@2), attack and defense
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reliabilities a = 6 = .99, and equal numbers of attackers and defenders (A=D).

Table 2. Run Times for Problem 9 2

CPU Time (secs) Reduction Factor
A(= D)

Singly Groups (Singly + Groups)

200 35.42 .15 236

300 112.94 .28 403

400 262.67 48 547

500 506.78 .82 618

600 866.44 1.30 666

Total Time 1784.25 3.03 588

Here the reduction in run time can be attributed to the much smaller number of survival

probability calculations that need to be made. This is a direct result of the Quasiuniform Attack

Theorem.

4.3 Problem 9 3

The exponential structure of the objective function in the model formulation for Problem 9 3

permits solution of problems much larger than either of the others. Notwithstanding the small run

times of the basic algorithm, there is a substantial reduction in run time when advantage is taken of

equally valued targets. The data for Table 3 are: fixed attack size of (A=) 6000, (T=) 100 targets,

(G=) 3 groups (target values: 10@22, 60@12, 30@2), attack and defense reliabilities a = .40,

b = .80, and coordination factor (r=) 3.
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'Fable 3. Run Times for Problem 9 3

CPU Time (secs) Reduction Factor
D

Singly Groups (Singly - Groups)

14,000 .31 .02 15

15,000 .27 .02 13

16,000 .31 .02 15

17,000 .29 .02 14

18,000 .29 .02 14

Total Time 1.47 .10 14

5. CONCLUDING REMARKS

In this paper we have emphasized the rin-max modeling and, especially, tile solution

'fficiency of the attacker/defender prol)em. We have (lone so for three different cases that model

alternate degrees of defender capability with respect to impact point prediciton and coordination. By

tailoring the algorithms to the situation in which only a few different target values are present, we are

ahle to solve problems of realistic size at reasonable cost. Multiple computer runs are thus feasible, arld

so it becomes practical to examine sensitivity and trade-off issues by solving many problem variatiIvns.

One such issue we have already begun to examine is the sensitivity of results to the at.tacker's

perception of the defender's capabilities [see O'Meara and Soland (1988d)]. For example, an attack

that is optinal against, a defender possessing IPP is not, in general, optimal against the same defender

lacking IPP. With efficient algorithms for the three cases of defensive capability examined above, it is

quite easy to determine the penalties paid by the attacker for misjudging the capability of the defense.

The attacker optimization models developed, and the defender optimization model for the case of IPl.

can also be used to examine the sensitivity of results to other parameters. For example, the attacker's
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knowledge of a, D, 6 and/or r may be imprecise. Similarly, the defender's knowledge of a, 6 and/or r

may be imprecise. Examination of the effects of such imprecision may be carried out in a

straightforward manner. It is also possible to compare, as a function of the true state of affairs and the

respective states perceived by attacker and defender, the actual and anticipated expected total survival

values.
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